A Simple Key For التعلم العميق Unveiled
A Simple Key For التعلم العميق Unveiled
Blog Article
فيما يلي بعض المجالات الرئيسية التي كان للتعلم العميق تأثير كبير عليها:
تحليل الصور الطبية يستخدم التعلم العميق للكشف التلقائي عن الخلايا السرطانية في التشخيص الطبي.
بالنسبة للعديد من المهام الأخرى، مثل رؤية الكمبيوتر، والتعرُّف على الكلام (المعروف أيضًا باسم معالجة اللغة الطبيعية)، والترجمة الآليّة، والمساعدين الافتراضيين، والروبوتات، فإنّ أداء أنظمة التعلم العميق يتجاوز بكثير أداء أنظمة التعلم الآلي التقليديّة.
يحتوي التعلم العميق على العديد من حالات الاستخدام في مجالات السيارات والفضاء والتصنيع والإلكترونيات والبحوث الطبية وغيرها من المجالات. فيما يلي بعض الأمثلة على التعلم العميق:
هذه مجرد بعض الاستخدامات الشائعة للتعلم العميق في تحليل البيانات. يجب أن نلاحظ أن هناك إمكانيات أكثر للاستفادة من تحليل البيانات بواسطة التعلم العميق في المستقبل، حيث ستستمر التقنيات في التطور والتحسين.
يستخدم تحليل البيانات بواسطة التعلم العميق في مجالات مثل التسويق وعلوم البيانات.
في هذا القسم، سنتناول تطور الذكاء الاصطناعي وأهميته في تغيير حياتنا اليومية. سنستعرض مفهوم الذكاء الاصطناعي،…
بعيدًا عن المُصطلحات المُعقّدة، تُحاول هذه الشبكات العصبيّة مُحاكاة سلوك الدماغ البشري - وإن كانت بعيدة كل البعد عن قدراته - مما يسمح لها "بالتعلم" من كميّات كبيرة من البيانات. بالإضافة إلى ما سبق، يُمكن لنماذج التعلم العميق التعرُّف على الأنماط المُعقّدة في الصور والنصوص والأصوات وغيرها من البيانات لإنتاج تنبؤات دقيقة.
وبعد ذلك، تقوم هذه الخوارزمية المدرَّبة جزئيًا بتسمية اتبع الرابط البيانات غير المسماة. ويُطلق على هذه العملية اسم التسمية المستعارة. ومن ثم يُعاد تدريب هذا النموذج على مزيج من البيانات الناتجة بدون برمجة صريحة.
كلية علوم الحاسوب وتكنولوجيا المعلومات / جامعة القادسية / العراق موقع الويب فيسبوك انستقرام
يشير مصطلح "العميق" في التعلم العميق إلى استخدام الشبكات العصبيّة العميقة، والتي تتكوّن من طبقات مُتعدِّدة من الخلايا العصبيّة الاصطناعيّة.
ولكن مع تطور تطبيقات التعلم العميق في المجالات الناشئة، ينبغي مراعاة التحديات المستقبلية التي يمكن أن تواجهها. فقد تشمل هذه التحديات تأمين البيانات والخصوصية ومعالجة حجم البيانات المتزايد وأخذ الاعتبار للقيود الأخلاقية والقانونية المحتملة.
تتكوّن شبكة التعلم العميق من طبقات من الخلايا العصبيّة الاصطناعية والاتصالات المعقدة، وهي عبارة عن بنية مُعقّدة مُصمّمة للتعلم والتنبؤ من البيانات، وفيما يلي نبذة سريعة عن هذه الطبقات:
يمكن للأنظمة التي تستخدم التعلم العميق في مجال التعلم الآلي أن تتعلم وتتطور بشكل مستمر، مما يساهم في تقدم التكنولوجيا وتحقيق التحسين المستمر في الأداء.